Indoor Air Quality Solutions Blog

"Healthier Air Starts Here" (407) 383-9459


Indoor Air Quality IAQ Blog





What Are MERV Ratings and How Do They Work?


What is the Minimum Efficiency Reporting Value?
 
The Minimum Efficiency Reporting Value, also known simply as MERV, measures the performance of air purifiers, specifically large purifiers intended to clean an entire house or building. Large, whole-house purifiers are not evaluated in the same manner used to measure the effectiveness of small, portable air cleaners, which are sometimes given Clean Air Delivery Ratings (CADR) instead.
 
Whole house and building air purifiers usually receive MERV ratings of between 1 and 16, though the upper limit is sometimes extended to 20. Common residential air purification systems tend to fall within a narrower range. Higher numbers translate to more effective air filtration. According to the online encyclopedia Wikipedia, "The scale is designed to represent the worst case performance of a filter when dealing with particles in the range of 0.3 to 10 micrometers."

MERV Rating Chart



Who Uses MERV Ratings?

 
The MERV rating system was initially created by the American Society of Heating, Refrigerating and Air-Conditioning Engineers (or ASHRAE for short) in 1987. However, this evaluation system was based on older methods that date back to 1968, when ASHRAE issued "Standard 52," the first formal testing standard for filters. According to an article by engineer Donald Newell, the purpose of the Standard has not changed since its early days, and is designed to determine the following attributes of air filters:
 • Particle removal capability
 • Resistance to airflow
 • Expected operating life
 
MERV ratings measure only the first quality, however. The MERV rating of an air cleaner is determined according to updated standards set by the ANSI/ASHRAE Standard 52.2-1999.
 
How is an Air Cleaner's MERV Rating Determined?
 
Air cleaners are given MERV ratings based on the results of a series of tests. Simply put, the process works as follows:

1. Test particles are introduced into the air of the testing area. These particles fall into one of twelve categories, based on size. The smallest category contains particles ranging from .3 to .4 micrometers (also known as "microns"). The largest includes particles from 7 to 10 micrometers.

2. The air is then passed through the filter being tested. The density of particles in the air is measured before and after the air passes through the filter to determine how effective the filter is at removing pollutants in each size category.
 
After this is done, the process is repeated five more times, so that there are ultimately six measurements for each of the twelve categories. The MERV number is assigned based on the worst result. Hence the "minimum" in "Minimum Efficiency Reporting Value."
 
What Does an Air Cleaner's MERV Rating Mean for You?
 
A helpful chart detailing what MERV ratings mean can be found at http://www.mechreps.com/PDF/Merv_Rating_Chart.pdf. Of particular interest is the column detailing what types of pollutants are filtered out at each level.
 
Precise technical details will be less important to the average customer than an answer to the question, "What MERV ratings are acceptable for my home?" The United States Environmental Protection Agency provides some information on this matter. "Medium efficiency filters with a MERV of 5 to 13," it states, "are reasonably efficient at removing small to large airborne particles. Filters with a MERV between 7 and 13 are likely to be nearly as effective as true HEPA filters at controlling most airborne indoor particles." Furthermore, the EPA adds that "medium efficiency air filters are generally less expensive than HEPA filters, and allow quieter HVAC fan operation and higher airflow rates than HEPA filters since they have less airflow resistance."
 
HEPA (High Efficiency Particulate Air) filters are the top-of-the-line air filters. Most homes are not capable of having whole-house HEPA filtration systems installed without extensive modification. Therefore, the EPA's recommendation of filters with a MERV rating from 7 to 13 is something that potential customers should keep in mind.
 
The National Air Filtration Association gives a roughly similar answer. The highest range it recommends for residential systems is 9-12; higher numbers are said to be suited for hospitals or commercial buildings rather than homes.
 
Limitations of the MERV Rating System
 
An air cleaner's MERV rating is based on its ability to filter out undesirable particles from the air. Not all indoor air pollution is particle-based, however. Gasses contribute significantly to pollution as well. The ability of an air purifier to remove particles is not predicative of its ability to remove gasses, so the MERV rating is not helpful in this regard.
 
Newell's article cautions that air filters given the ASHRAE test "are likely to perform worse than predicted because of various installation conditions." This is known as the "installation effect." Therefore, it is important to remember that MERV ratings are assigned based on a purifier's performance in carefully controlled testing conditions, and not the "real world."
 
And finally, as stated above, MERV ratings are only relevant to large air cleaners intended to affect whole buildings. Common small portable air cleaners do not have MERV ratings.
 
Conclusion
 
The MERV rating system is a helpful way to describe the capabilities of different large air cleaners. It is determined through rigorous testing and is gives the worst-case performance of the filter, so the MERV number is not inflated. No one should forget to consider MERV ratings when shopping for such cleaners. There are, however, other factors to consider as well, so it would be a mistake to think that buying the right air filtration system is a simple matter of picking the unit with the highest MERV.


    John P. Lapotaire, CIEC
    Certified Indoor Environmental Consultant
    Microshield Environmental Services, LLC
    www.Microshield-ES.com  www.CFL-IAQ.com



Add a Comment

(Enter the numbers shown in the above image)


Follow jlapotaire on Twitter


Review microshield-es.com on alexa.com
   

[Valid RSS]
Add this Content to Your Site
   


Latest Top (12) News


EPISODE 535: Oliver Threlfall - CEO Steamatic of Australia - A Unique Perspective on how the Global Restoration Big Dogs Play!
Over the past 30 years Oliver Threlfall has been totally dedicated to the cleaning and restoration industry. He studied biology at Deakin University- before commencing Steamatic in Melbourne, Victoria in 1986. He then completed IICRC (The Institute of Inspection, Cleaning and Restoration Certification) training in various modules and in addition took Microbial and Bioaerosol remediation training under the guidance of Dr. Tullis and Dr. Thulman of Duke University. Steamatic was formed in Australia in 1986 following requests from underwriters to establish proven claims reduction services that had been demonstrated overseas. They then transformed an established cleaning company into a specialist cleaning technologies firm. Oliver is the Steamatic of Australia CEO which makes him a very busy and connected man "down under".

Thu, 21 Feb 2019 15:21:00 -0500


EPISODE 534: Corbett Lunsford - The Home Performance Worskshop & The Worlds Highest Performance Tiny House on Wheels!
Corbett Lunsford, wasn't a home performance expert- he used to play piano for ballerinas. In 2008, he learned a few things very quickly: construction is unbelievably messy, most pros are over-rushed and under-paid, and homeowners end up suffering in small ways, for their entire lives in a house. None of this has to be so- we can opt out of the whole thing with performance testing. His goal is to package building performance so it can easily be understood and used by professionals and consumers alike, for better buildings worldwide. In 2009, he started teaching pros through the Building Performance Workshop and he has hosted over 300 YouTube videos and 80 interviews for the Building Performance Podcast. He also wrote the book Home Performance Diagnostics: the Guide to Advanced Testing, and developed the APT Reports software tool. In 2016 he and his wife Grace built the world's highest performance tiny house on wheels, the #TinyLab, and toured the US before settling down in Atlanta, Georgia. Along the way, they created the first TV series about home performance, Home Diagnosis, which airs on public TV across the U.S. Corbett, Grace, and their new baby went on a 13,000 mile, 34-city U.S. Tour from April 2016-January 2017 in the world's highest performance tiny house on wheels, the #TinyLab. Their mission was simple: to revolutionize the home market by teaching consumers and contractors alike to use scientific testing to prove the work gets done to quality standards. Each city on the Proof Is Possible Tour was sponsored by a local company that shared the passion for empowering homeowners and changing the game. Along the way certain cities shared in filming of the couple's TV show Home Diagnosis. They invited over 7,000 strangers into their home on the tour, and now live in Atlanta, Georgia.

Thu, 14 Feb 2019 15:32:00 -0500


EPISODE 533: Open Mic - Topics for this week include: Current Events, Certification, Standards, Training, Networking & Resources
Today we are going to try something new and if it works we will make it a regular part of the line up. We are going to throw out some topics, invite a few friends and have a discussion about IAQ, disaster restoration and building science. We also encourage listeners to text in your questions or comments. Today we expect to hear from Jay Stake, Eric Shapiro, Carl Grimes, John Downey and Pete Consigli. The topics we will throw out for discussion will come from the list in this week’s show title. We have some of the leaders of the industry join us every week so lets take advantage of that and start a conversation.

Thu, 07 Feb 2019 15:56:00 -0500


EPISODE 533: Open Mic - Topics for this week include: Current Events, Certification, Standards, Training, Networking & Resources
Today we are going to try something new and if it works we will make it a regular part of the line up. We are going to throw out some topics, invite a few friends and have a discussion about IAQ, disaster restoration and building science. We also encourage listeners to text in your questions or comments. Today we expect to hear from Jay Stake, Eric Shapiro, Carl Grimes, John Downey and Pete Consigli. The topics we will throw out for discussion will come from the list in this week’s show title. We have some of the leaders of the industry join us every week so lets take advantage of that and start a conversation.

Thu, 07 Feb 2019 15:56:00 -0500


EPISODE 532: Brett Singer, PhD Group Leader – Indoor Environment Division Lawrence Berkeley National Laboratory (LBNL) – Original Air Date: 5-6-2016| Episode: 413
Today we flash back to a great Research to Practice show with Brett C. Singer, PhD. Dr. Singer is the Staff Scientist and Group Leader of Indoor Environment in the Energy Analysis and Environmental Impacts Division of Lawrence Berkeley National Laboratory (LBNL). He is also a Principal Investigator in the Whole Building Systems Group in the Building Technologies and Urban Systems Division. Dr. Singer conceives and leads research projects related to air pollutant emissions and physical-chemical processes, and pollutant exposures in both outdoor and indoor environments, aiming to understand real world processes and systems that affect air pollutant exposures. The recent focus of Dr. Singer’s work has been indoor environmental quality and risk reduction in high performance homes, with the goal of accelerating adoption of IAQ, comfort, durability and sustainability measures into new homes and retrofits of existing homes. Key focus areas of this work are low-energy systems for filtration, smart ventilation and mitigation approaches to indoor pollutant sources including cooking. Dr. Singer co-developed the Population Impact Assessment Modeling Framework (PIAMF). He holds a PhD in Civil & Environmental Engineering from the University of California, Berkeley.

Fri, 01 Feb 2019 15:21:00 -0500


EPISODE 532: Brett Singer, PhD Group Leader – Indoor Environment Division Lawrence Berkeley National Laboratory (LBNL) – Original Air Date: 5-6-2016| Episode: 413
Today we flash back to a great Research to Practice show with Brett C. Singer, PhD. Dr. Singer is the Staff Scientist and Group Leader of Indoor Environment in the Energy Analysis and Environmental Impacts Division of Lawrence Berkeley National Laboratory (LBNL). He is also a Principal Investigator in the Whole Building Systems Group in the Building Technologies and Urban Systems Division. Dr. Singer conceives and leads research projects related to air pollutant emissions and physical-chemical processes, and pollutant exposures in both outdoor and indoor environments, aiming to understand real world processes and systems that affect air pollutant exposures. The recent focus of Dr. Singer’s work has been indoor environmental quality and risk reduction in high performance homes, with the goal of accelerating adoption of IAQ, comfort, durability and sustainability measures into new homes and retrofits of existing homes. Key focus areas of this work are low-energy systems for filtration, smart ventilation and mitigation approaches to indoor pollutant sources including cooking. Dr. Singer co-developed the Population Impact Assessment Modeling Framework (PIAMF). He holds a PhD in Civil & Environmental Engineering from the University of California, Berkeley.

Fri, 01 Feb 2019 15:21:00 -0500


EPISODE 532: Brett Singer, PhD Group Leader – Indoor Environment Division Lawrence Berkeley National Laboratory (LBNL) – Original Air Date: 5-6-2016| Episode: 413
Today we flash back to a great Research to Practice show with Brett C. Singer, PhD. Dr. Singer is the Staff Scientist and Group Leader of Indoor Environment in the Energy Analysis and Environmental Impacts Division of Lawrence Berkeley National Laboratory (LBNL). He is also a Principal Investigator in the Whole Building Systems Group in the Building Technologies and Urban Systems Division. Dr. Singer conceives and leads research projects related to air pollutant emissions and physical-chemical processes, and pollutant exposures in both outdoor and indoor environments, aiming to understand real world processes and systems that affect air pollutant exposures. The recent focus of Dr. Singer’s work has been indoor environmental quality and risk reduction in high performance homes, with the goal of accelerating adoption of IAQ, comfort, durability and sustainability measures into new homes and retrofits of existing homes. Key focus areas of this work are low-energy systems for filtration, smart ventilation and mitigation approaches to indoor pollutant sources including cooking. Dr. Singer co-developed the Population Impact Assessment Modeling Framework (PIAMF). He holds a PhD in Civil & Environmental Engineering from the University of California, Berkeley.

Fri, 01 Feb 2019 15:21:00 -0500


EPISODE 532: Brett Singer, PhD Group Leader – Indoor Environment Division Lawrence Berkeley National Laboratory (LBNL) – Original Air Date: 5-6-2016| Episode: 413
Today we flash back to a great Research to Practice show with Brett C. Singer, PhD. Dr. Singer is the Staff Scientist and Group Leader of Indoor Environment in the Energy Analysis and Environmental Impacts Division of Lawrence Berkeley National Laboratory (LBNL). He is also a Principal Investigator in the Whole Building Systems Group in the Building Technologies and Urban Systems Division. Dr. Singer conceives and leads research projects related to air pollutant emissions and physical-chemical processes, and pollutant exposures in both outdoor and indoor environments, aiming to understand real world processes and systems that affect air pollutant exposures. The recent focus of Dr. Singer’s work has been indoor environmental quality and risk reduction in high performance homes, with the goal of accelerating adoption of IAQ, comfort, durability and sustainability measures into new homes and retrofits of existing homes. Key focus areas of this work are low-energy systems for filtration, smart ventilation and mitigation approaches to indoor pollutant sources including cooking. Dr. Singer co-developed the Population Impact Assessment Modeling Framework (PIAMF). He holds a PhD in Civil & Environmental Engineering from the University of California, Berkeley.

Fri, 01 Feb 2019 15:21:00 -0500


EPISODE 532: Brett Singer, PhD Group Leader – Indoor Environment Division Lawrence Berkeley National Laboratory (LBNL) – Original Air Date: 5-6-2016| Episode: 413
Today we flash back to a great Research to Practice show with Brett C. Singer, PhD. Dr. Singer is the Staff Scientist and Group Leader of Indoor Environment in the Energy Analysis and Environmental Impacts Division of Lawrence Berkeley National Laboratory (LBNL). He is also a Principal Investigator in the Whole Building Systems Group in the Building Technologies and Urban Systems Division. Dr. Singer conceives and leads research projects related to air pollutant emissions and physical-chemical processes, and pollutant exposures in both outdoor and indoor environments, aiming to understand real world processes and systems that affect air pollutant exposures. The recent focus of Dr. Singer’s work has been indoor environmental quality and risk reduction in high performance homes, with the goal of accelerating adoption of IAQ, comfort, durability and sustainability measures into new homes and retrofits of existing homes. Key focus areas of this work are low-energy systems for filtration, smart ventilation and mitigation approaches to indoor pollutant sources including cooking. Dr. Singer co-developed the Population Impact Assessment Modeling Framework (PIAMF). He holds a PhD in Civil & Environmental Engineering from the University of California, Berkeley.

Fri, 01 Feb 2019 15:21:00 -0500


EPISODE 531: David B. Corry, M.D. – Baylor College of Medicine – Fungi in Health & Disease
This week we welcome Professor of Pathology & Immunology and Medicine, David B. Corry, MD of Baylor College of Medicine, Michael E. Debakey VA Medical Center. We are looking forward to a fascinating discussion on Fungi in Health and Disease with Dr. Corry. Dr. Corry is a pulmonologist by clinical background and still practices, mostly focusing on allergic airway diseases such as asthma and sinusitis. Most of the time, he is an immunologist and his research focus is into the mechanisms underlying inflammatory lung and other diseases including smoking-related emphysema, asthma, and sinusitis. Among his groups contributions to science, they have shown how fungi cause allergic inflammation-largely through their release of powerful proteases. They have further demonstrated the ability of fungi to infect the mouse airway and produce a disease that is essentially identical to asthma and further demonstrated that common human disorders such as asthma and chronic sinusitis are often times, in essence chronic fungal infections. His group primarily relies on antifungal medications to treat their asthma and sinusitis patients. It has been revolutionary and they have published some of their experience, with more to come. Dr. Corry also recently published a paper on Candida and how it goes directly from the blood stream to the brain in mice. We will also talk about non respiratory health issues and fungi including the state of evidence on Alzheimers, Chronic Fatigue and other health issues sometimes blamed on Fungi. If you are interested in Fungi and Health don’t miss this show.

Fri, 25 Jan 2019 15:12:00 -0500


EPISODE 531: David B. Corry, M.D. – Baylor College of Medicine – Fungi in Health & Disease
This week we welcome Professor of Pathology & Immunology and Medicine, David B. Corry, MD of Baylor College of Medicine, Michael E. Debakey VA Medical Center. We are looking forward to a fascinating discussion on Fungi in Health and Disease with Dr. Corry. Dr. Corry is a pulmonologist by clinical background and still practices, mostly focusing on allergic airway diseases such as asthma and sinusitis. Most of the time, he is an immunologist and his research focus is into the mechanisms underlying inflammatory lung and other diseases including smoking-related emphysema, asthma, and sinusitis. Among his groups contributions to science, they have shown how fungi cause allergic inflammation-largely through their release of powerful proteases. They have further demonstrated the ability of fungi to infect the mouse airway and produce a disease that is essentially identical to asthma and further demonstrated that common human disorders such as asthma and chronic sinusitis are often times, in essence chronic fungal infections. His group primarily relies on antifungal medications to treat their asthma and sinusitis patients. It has been revolutionary and they have published some of their experience, with more to come. Dr. Corry also recently published a paper on Candida and how it goes directly from the blood stream to the brain in mice. We will also talk about non respiratory health issues and fungi including the state of evidence on Alzheimers, Chronic Fatigue and other health issues sometimes blamed on Fungi. If you are interested in Fungi and Health don’t miss this show.

Fri, 25 Jan 2019 15:12:00 -0500


EPISODE 530: Shelly Miller, PhD – University of Colorado – The Weatherization, Ventilation & Respiration Puzzle
This week Shelly Miller, PhD joins us to discuss some recent research and thoughts on weatherization, ventilation & respiration. We hear a lot that we need to tighten homes and ventilate them. What does that do with respect to occupant health? Today we will go over some results from work Dr. Miller has done. Dr. Miller is an Associate Professor at the University of Colorado Boulder in the Mechanical Engineering Department and faculty in the interdisciplinary undergraduate Environmental Engineering Program. At the University of Colorado Boulder Dr. Miller investigates indoor air quality, assesses exposures to air pollutants, and develops and evaluates air pollution control measures. Her research has included studying weatherization of homes and indoor air quality, understanding the role of ventilation systems in the transmission of infectious agents in buildings, engineering controls for reducing exposures to infectious diseases, studying ultraviolet germicidal coil cleaning technology, source apportionment of particulate matter and associated health effects, characterization of indoor air quality and the microbial communities in homes, and investigating urban air quality issues including industrial odor episodes. Dr. Miller has received funding for her research program from the US EPA, CDC, NIOSH, NSF, NIH, ASHRAE, HUD, Alfred P. Sloan Foundation, and various private foundations and industry sponsors.

Fri, 18 Jan 2019 15:09:00 -0500
Follow Microshields IAQ News and Headlines Bloglines RSS Feed

Subscribe with Bloglines

 



IAQ News and Articles

Latest Top (10) News
http://recordings.talkshoe.com/rss1547.xml